
Consequences of Wannier - Stark quantization on the impact ionization rate in insulators and

large-bandgap semiconductors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys.: Condens. Matter 10 L607

(http://iopscience.iop.org/0953-8984/10/35/002)

Download details:

IP Address: 171.66.16.209

The article was downloaded on 14/05/2010 at 16:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/10/35
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter10 (1998) L607–L613. Printed in the UK PII: S0953-8984(98)95053-6

LETTER TO THE EDITOR

Consequences of Wannier–Stark quantization on the
impact ionization rate in insulators and large-bandgap
semiconductors

B K Ridley
Department of Physics, University of Essex, Colchester CO4 3SQ, UK

Received 12 June 1998

Abstract. At very high electric fields the formation of Wannier–Stark states converts the
electron gas into a quasi-2D system. Comparison of the bulk and quasi-2D impact ionization
rates within the framework of a simple bandstructure model shows that the 2D rate is significantly
smaller. It is concluded that in materials where Wannier–Stark states can be established,
breakdown by impact ionization is inhibited.

The possibility that Bragg reflection could cause the motion of an electron in a periodic
potential to become oscillatory at high electric fields is well known [1–3]. The condition for
this is that a full traversal of the first Brillouin zone in the direction of the field occurs before
the electron is scattered, i.e.eFaτ/h̄ > 1, whereF is the field,a is the lattice constant
and τ is the scattering time. The conduction band converts to a ladder of Wannier–Stark
(WS) states whose properties continue to attract attention [4, 5]. A study of the transport of
electrons in a single-band WS ladder has been made by a number of authors [6–8] in which
it has been shown that the motion of electrons perpendicular to the field was describable in
terms of a very high temperature, and that the nearly flat distribution that this implied led
to a negative differential resistance (NDR). Following the analysis of Esaki and Tsu [9] of
transport in a superlattice, there is now considerable experimental and theoretical interest
in the investigation of WS states in layered structures (see e.g. [10]). As far as this author
is aware the question of how impact ionization across the forbidden gap in bulk material is
affected has not been addressed. A recent estimate of the scattering time in GaN yielded
1.4× 1014 s−1 implying that a field of at least 4 MV cm−1 would be required to produce
a WS ladder [11]. At fields of this magnitude the question of impact ionization cannot be
avoided.

A comprehensive treatment of this topic would require an account of the detailed valence
band and conduction band structure, plus the structure of higher lying conduction bands,
and it would be intensively numerical. Nevertheless, the essential physics of the situation
can be illustrated by adopting a very simple model for the bandstructure, with an analysis
limited to the case of a single conduction band and a single valence band. For concreteness
we consider the case of an electron in the conduction band exciting an electron in the
valence band. In order to illustrate, in the simplest manner, the point that the formation of
WS states inhibits impact ionization, the two bands are taken to be of simple tight-binding
form for a cubic lattice. We will assume that communication between bands other than via
impact ionization can be ignored. This simple model has the virtue of focusing attention
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on the effect of the difference in effective dimensionality associated with WS localization,
and on the effect of an effective increase of threshold energy.

The quantum-mechanical bulk impact-ionization rate for an electron in a parabolic band
with energyE close to threshold has the well known quadratic energy dependence [12, 13]. It
is derived assuming that collisions with like-spins give negligible rates through interference,
and may be presented in the form [14]
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whereWo = (e2/4πεo)2m0/h̄
3, ε∞ is the high-frequency permittivity,m∗c is the electron

effective mass,µ = m∗c/m
∗
h, m∗h is the hole effective mass,Ic and Iv are cell-periodic

overlap integrals,ET is the threshold energy andEg is the bandgap. The assumption of
parabolicity restricts the validity of this expression to narrow-bandgap semiconductors, but
a small modification can be made to increase its general validity. The modification is
based on the assumption that the electron after impact ionizing, and the electron knocked
out of the valence band, end up in low-energy parts of the conduction band where the
band is parabolic to a good approximation. The electron producing impact ionization, on
the other hand, is usually in a high-energy region of the band where the energyE(k) is
non-parabolic. The modification of equation (1) consists of simply refraining from using
the parabolic relation betweenE andk (the wavevector of the impacting electron) in the
derivation without changing anything else. The more generally applicable equation that is
thereby obtained is
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Note that the impact-ionization process is forbidden if

E(k) <
µ

1+ 2µ

h̄2k2

2m∗c
+ Eg

which may be true in the higher energy regions of the conduction band. Indeed, there are
crystallographic directions that do not have states appropriate for initiating impact ionization.
Figure 1(a) illustrates this point. The energy bandstructure in the tight-binding model for a
cubic lattice has the form:

E(k) = E0

∑
α=x,y,z

sin2
(
kαa/2

)
(3)

wherea is the lattice constant. WithEg = E0, electrons travelling in the〈100〉 direction
cannot impact ionize. In large-bandgap semiconductors the conditionEg > E0 can arise,
and this may totally inhibit impact ionizing collisions initiated by electrons in the lowest
conduction band whether WS states are formed or not. In our discussion we will assume
that this isnot the case, since we are interested in contrasting the rates of impact ionization
with and without WS states.

It may be noted that any problems computingIc and Iv can be bypassed since we are
interested only in relative magnitudes and we can assume that the relevant quantities do not
change significantly in the transition from 3D to quasi-2D.

As far as the author is aware there is no expression equivalent to equation (1) for
the impact-ionization rate for the quasi-2D case. However, the derivation of the 2D rate
is straightforward and the result can readily be applied to the situation involving WS
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Figure 1. The argument of the energy-conserving delta function as a function of the wavevector
of the impacting electron along principal cubic crystallographic directions assuming a cubic
tight-binding bandstructure andEg = E0. (a) Bulk material. (b) Wannier–Stark confinement
along a〈100〉 direction,k along a〈110〉 direction. The figures on the curves refer to the field
reductions in the effective energy gap in units ofE0.

localization. The rate, again neglecting like-spin collisions and assuming that the electrons
after impact ionization are in the parabolic region of the conduction band, is given by
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The initial states are designated byn1 (conduction band) andn2 (valence band). The
final statesn3 andn4 are both in the conduction band. The field is in thez-direction and
z01(n1) etc are the positions of the centres of the WS states. The form factor contains the
Bloch oscillator wavefunctions of the states involved.ECB andEVB are the widths of the
conduction and valence bands in the direction of the field. The wavevectork, lying in the
plane normal to the field, is that of the impacting electron.
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The effective energy gap,E∗g , is increased over the actual bandgap,Eg, by the sum
of half the bandwidths of the conduction and valence bands, since the impacting electron
and the target electron are both in WS states, but it also depends on the potential gradient.
The effective enhancement of the bandgap can be nullified by transitions that send electrons
down the potential gradient, but that will be at the expense of decrease of overlap of the
initial and final wavefunctions.

The major differences from the 3D case are:

(1) The appearance of a form factor which quantifies the overlap and separation of the
electrons involved.

(2) The effective energy gap is increased by the sum of the half-bandwidths of the
conduction and valence bands and is dependent on the field.

(3) The energy dependence at threshold is linear instead of quadratic. If the field, and
therefore the confinement, is along a〈100〉 direction the optimum direction for the impacting
electron is along a perpendicular〈110〉 direction. If Eg = E0 as before, and ifE0 is also
the valence band energy, (i.e.E0 = ECB = EVB) the effective bandgap without help from
the applied field is now 2Eg. Figure 1(b) illustrates that even along the〈110〉 direction
there is insufficient energy to impact ionize, and that some help from the field is needed,
though this will be at the expense of a reduced overlap of initial and final states.

The possible transitions can be categorized as follows. The transitions of the impacting
electron can beintrasubband(n3 = n1) or intersubband(n3 6= n1) (figure 2); and they can
be fully local, z02(n2) = z01(n2) and z02(n4) = z01(n3) (a in figure 2), half-local (b), or
completely non-local (c). In fully local intrasubband transitions the impacting and target
electrons before and after the interaction occupy WS states centred on the same unit cell. In
this case the effective energy gap consists of the sum of the conduction and valence band half
gaps and does not involve the potential gradient. In half-local intrasubband transitions the
impacting and target electrons occupy WS states centred on the same unit cell, but the excited
electron is found in a WS state centred elsewhere. In non-local intrasubband transitions the
target and excited electron occupy WS states spatially separated from that of the impacting
electron. In local intersubband transitions impacting and target electrons occupy WS states
centred on the same unit cell and move to the same WS state after excitation (b in figure 2).
In intersubband transitions the effective energy gap always involves the potential gradient.
In half-local intersubband transitions spatial coincidence occurs only before or after impact.
In non-local intersubband transitions there is no spatial coincidence (c in figure 2).

Generally, the wavevector of the impacting electron is large, and hence the form factors
for most half- and completely non-local transitions will be negligible. Even the least partially
non-local transition will have a form factor less than that for a local transition by a factor
exp(−ka). Little error will be incurred by neglecting contributions from all transitions that
have a non-local component. We therefore take into account only local transitions (a and b
in figure 2).

Our model proceeds to make the simplifying assumption thatm∗c = m∗h = m0. In order
to obtain an estimate of the form factor we exploit our simple model for the bandstructure
in the field direction, namely

E = E0 sin2Ka/2 − π
a
. K . π

a
(7)

whereE0 is the bandwidth, and this allows us to express the WS eigenfunction in the form
of a Bessel function [8],

ψn(z) = Jn(u) where u = E0/2eFa n = (z− zo)/a (8)
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Figure 2. Types of impact ionizing transitions between Wannier–Stark states. Intrasubband
transitions (impacting electron stays in initial WS state). Intersubband transitions (impacting
electron changes WS state). Local transitions are depicted in a and b, non-local in c.

wherez0 is the position of the centre of the Bloch oscillation. Unless the field is enormous
the argumentu is very large and the asymptotic form of the Bessel function can be
used. Normalization is approximated by ignoring the exponential-like tails for largen and
imposing a cut-off at|z| = πua/2. For simplicity we assume thatE0 = ECB = EVB . Then
for local transitions such thatz02(n2) = z01(n1), z02(n4) = z01(n3) andd = z01(n3)−z01(n1),
we obtain foru� 1

Fn3n4
n1n2

(k) = 2 cos2(πd/2a)

πuka

[
1− |d|

πua
− 1

πuka
(1− exp{−πuka(1− |d|/πua)})

]
. (9)

This expression gives unity when both|d| = 0 andk = 0, as it should (figure 3(a)). Now
d = na, wheren is an integer, and so the form factor is zero unlessn is even.

For the purpose of evaluating the sum in equation (4) we assume that there is zero
overlap for|d| > πua and that the effective energy gap (equation (6)) is given by

E∗g = Eg + E0(1− d/πua) − πua . d . πua (10)

so that the minimum effective energy gap isEg. In other words we explicitly ignore Franz–
Keldysh, sub-energy gap transitions. Figure 3(b) shows the dependence of|Fn3n4

n1n2
(k)|2 on d,
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Figure 3. The form factor (a) as a function of normalized wavevector,ka (d = 0), (b) its square
as a function of the spatial separation,d, of initial and final states, including the variation ofk
at threshold withd.

taking into account the dependence ofk on d. In the example shown in figure 3(b), we have
takenEB = Eg = 3.4 eV, a = 2.25 Å andF = 5 MV cm−1. Note that the rate vanishes
when the effective bandgap,E∗g , equals the bulk bandgap,whatever the initial energy. This
is because the wavefunction overlap vanishes. Thus, finite rates are always associated with
effective bandgaps that are larger than the actual bandgap. This means that they are always
smaller than the bulk rate at a given field. They are also smaller when the comparison
is made at the respective threshold energies because of the poor overlap, even taking into
account all allowable transitions. A measure of the contribution made by the form factor is
the sum; in our example,

∑
(F (k))2 ≈ 10−4. This is a measure of the reduction of impact

ionization rate at threshold energy caused by the formation of WS states.
The conclusion that can be drawn is that impact ionization is inhibited if WS states

form. This suggests that breakdown is dependent on the field direction relative to the
crystallographic direction. Orientation of the field along a direction in which the dimension
of the Brillouin zone is small encourages the formation of WS states (given the reasonable
assumption that the scattering rate is largely independent of field orientation) and such an
orientation therefore inhibits breakdown. In cubic crystals the dimension of the Brillouin
zone is smallest along the〈100〉 direction. A further factor in the case of large-bandgap
semiconductors, even in the absence of WS states, is the necessity for the impacting electron
to transfer to an upper band in order to acquire sufficient energy to impact ionize, and
this is another factor encouraging inhibition. One therefore may speculate that electrical
breakdown in materials possessing energy gaps of the order of or greater than typical
conduction bandwidths will be associated with a mechanism other than impact ionization.
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